

Design Document

DEC13-09 Chiptune Synthesizer

Team Members: Dustin Amesbury

Wallace Davis

Darren Hushak

Brittany Oswald

John Tuohy

Client: Dr. Joe Zambreno

Advisor: Dr. Nathan Neihart

Project Charter Version Control

Version Date Author Change Description

0.0 14 March 2013 Brittany Oswald Document created

0.1 14 March 2013 Everyone Group collaboration via

GoogleDocs to fill out most of

the sections

1.0 15 March 2013 John Tuohy Assembled and formatted the

document

1.1 29 April 2013 Brittany Oswald, Dustin

Amesbury, and John

Tuohy

Revised and incorporated

feedback

2.0 9 December 2013 John Tuohy Updated entire document

Table of Contents
Roles and Responsibilities ... 4

Definitions and Acronyms .. 5

Executive Summary ... 6

Project Overview .. 7

System Requirements .. 7

Non Functional ... 7

Functional ... 8

Detailed Design .. 9

User interface specification ... 9

I/O Specification ... 9

Hardware Specification ... 9

Software Specification .. 9

Simulations and Modeling... 9

Implementation Issues/Challenges ..10

Design Documents ..11

System Design ..11

Hardware Design ...11

Software Design ..14

Standards ...15

Testing and Evaluation ..15

Project References ...16

Roles and Responsibilities

Dustin Amesbury -- Project Leader -- As the project leader, Dustin is in charge of making sure

the team stays on track throughout the semester as well as leading team meetings. Dustin will

also be involved with both Raspberry Pi modules.

Wallace Davis -- Webmaster -- Wallace is in charge of maintaining the public website and will

be involved with implementing the songbox features. Wallace will also be assisting Darren with

assembling and testing the electrical components of the chipophone.

Darren Hushak -- EE Director -- Darren will be the main advisor and executor of any hardware

component of the project, including restoration of the organ console, its keyboards, and any of

the original componentry that we wish to keep. Furthermore, Darren will be responsible for the

conversion of the keyboards to MIDI controllers, addition of user input controls, and the

interconnection between the MIDI controllers, the song playback and recording unit, and the

sound modules. Lastly, as a music technology minor, Darren will advise and direct the group

regarding standard music technology practices and music technology structures.

Brittany Oswald -- User Experience Designer -- Brittany is going to ensure the finished product

is able to be used by users of all skill levels and abilities. Brittany will work on retrofitting and

equipping the organ with the buttons and knobs and other user interface elements. She will also

participate in writing code for the sound generation and ensure a quality experience for the user.

Brittany’s focus will be to see the project to completion.

John Tuohy -- Communications Liaison -- Along with communicating with the client and

advisor, John is involved with designing and creating the software synthesizer on the Raspberry

Pi.

Definitions and Acronyms

Term Description

Channel (MIDI) The MIDI specification allows for 16 MIDI

“Channels,” which are used to direct

different streams of data to different

destinations. Each event has a MIDI

channel associated with it, and will

therefore be routed based upon its

channel. The ‘broadcast’ channel is set per

controller, and the ‘listen’ channel is set per

module. All MIDI channels are broadcast to

every module, but it’s up to the module to

pick the desired channel to listen to.

Chiptune/8-bit music “Chiptune” music can be defined as a

genre of music born out of the restrictive

musical palette of 8-bit PCM audio used in

the early popular gaming consoles. 8-bit

refers to the bit depth of PCM audio, in that

the digital form of the audio can only take

on one of 2^8 values, which creates

incredibly unique sounds.

Chipophone The unofficial name of our chiptune

synthesizer

Controller (MIDI) A MIDI controller, most commonly a

keyboard, is a device that takes user input

and converts it to MIDI data.

Instrument/Voice (MIDI) An instrument or voice is a software

program or hardware component that takes

MIDI data as an input and outputs either

PCM or analog audio.

MIDI MIDI, standing for Musical Instrument

Digital Interface, is a standard for

interconnection and communication

between digital music devices. It is a serial

protocol that only conveys events relating

to musical performance, such as notes,

note volume, and control values for

manipulation of audio. MIDI itself does not

convey any audio information.

MIDI CPU A MIDI CPU is a hardware circuit board

that takes in analog or switched input from

user interface devices (switches,

potentiometers, encoders, etc), and outputs

MIDI data.

Module A MIDI module is a device that hosts an

instrument/voice, which takes MIDI input

and outputs audio. The module is the shell

for the voice, and the voice refers to the

algorithm or circuitry used to actually

produce audio.

Raspberry Pi Our chosen hardware platform for both our

computational and signal processing

needs. It is an incredibly small, yet

powerful, bare-bones computer that runs a

linux operating system.

Synthesizer A synthesizer can refer to an analog or

digital piece of equipment or software that

can self-generate audio using various

algorithms and techniques.

Executive Summary

Our challenge is to create a device (nicknamed “The Chipophone”) that will be used as a display

piece for the EE/CprE department. Our “chipophone” is a synthesizer that plays music using

“chiptune” or “8-bit” sounds commonly associated with early console gaming systems. We are

tasked with taking an existing electric organ (one which has already been donated to the

project) and retrofitting it to play 8-bit music. All of the pedals, switches, and keys will be wired

to create MIDI signals that will be interpreted and rendered into audio output. After the organ

has been created, it will be placed in the TLA and will be used as a interactive showpiece to

supplement the two arcade machines and the virtual pinball machine already located therein.

Project Overview
Our solution involves two stages: MIDI retrofitting the organ, and creation of an audio generation

unit. We will be using MIDI CPUs to generate MIDI signals, and Raspberry Pi microcomputers

to process and interpret said MIDI signals. To retrofit the organ, we will remove most of the

internal mechanisms and circuitry of the organ and rewire the keyboards and

button/switchboard interfaces into MIDI CPU chips. These chips will then be routed into the

Raspberry Pi boards, whose audio generation code is our responsibility.

The Chipophone will also allow for many features native to digital synthesizers For example, it

will hold in memory various voices loadable into five different modules simultaneously; user

creatable voices; mixing of multiple channels, etc. An additional third stage, to be implemented

in the second semester of the project, will be to create a “Songbox” module, which will allow for

recording and playback of both preloaded and user generated songs.

System Requirements

Non Functional

1. Usability

a. Synthesizers in general can greatly range in complexity and appear intimidating

to new users. Our goal is to make our synthesizer easy to use for everyone, both

advanced users who have specific goals when they play music and for a

beginner user who wants to make some cool sounds.

2. Portability

a. The chipophone will be easily transported from event to event. It will have casters

so it can be moved. The only cable will be a single power cable which plugs into

an normal outlet.

3. Performance

a. The chipophone will have no noticeable latency between keypress and sound.

The chipophone will also be able to boot and be ready to play in under 30

seconds.

4. Maintainability

a. If anything goes wrong with any of the Raspberry Pi boards, they will be able to

be easily swapped out for a new one.

5. Security

a. There will be a lock on the back of the chipophone, preventing anyone from

stealing the boards or other equipment.

Functional

1. User Controls

a. Keyboards and Pedals

i. Shall physically interact similarly to a regular organ

ii. Each key shall produce a sound in tune with the corresponding note

played on a regular (tuned) organ

b. Voices

i. Able to change the instrument associated with each keyboard and the

pedals

ii. Able to have the same instrument associated with more than one

keyboard

c. Buttons and Knobs

i. Adjust pitch/frequency

ii. Adjust ADSR envelope

iii. Change instrument of pedals and each keyboard independently

d. Songbox

i. Selection and play default demo songs

ii. Pause current selection being played

iii. Record input

iv. Pause recording input

v. Play recorded input

vi. Loop recorded input

2. Technical

a. Use MIDI Standard

b. Boot time shall be less than 20 seconds, but faster is better

c. Instruments

i. There shall be 5 types of waves: two square waves with variable duty

cycles, one triangle wave, one sawtooth wave, and one representing

noise

Detailed Design

User interface specification

The keyboards and foot pedals are used to play musical notes by the user. The keyboards and

foot pedals can have different voices set to them along with several other characteristics about

the voice edited. This is done with the user interface panel on the front of the organ above the

top keyboard. There are several encoders, switches and arcade buttons on this panel. The

arcade buttons were chosen to fit the video game theme of the project. These inputs all fed into

an Arduino microcontroller which produces MIDI control signals sent to the Raspberry Pis to edit

the voices.

I/O Specification

The user will interact with the keyboard keys, buttons, and pedals. These input components are

all hooked up in a switching array to the MIDI CPUs. The MIDI CPUs will generate MIDI data

based on what input they are getting. This MIDI data will enter the songbox Raspberry Pi

through the GPIO pins on the Pi. The songbox will add any additional MIDI data required and

pass on the MIDI data to the synthesizer Raspberry Pi, once again through the GPIO pins on

the Pis. The MIDI data gets processed on the synthesizer and sound is produced through the

3.5mm sound jack output on the Raspberry Pi and goes to the speakers.

Hardware Specification

We are using two Raspberry Pi model B computer boards, four MIDI CPUs, and an existing

organ that’s had its internal mechanisms removed and discarded to construct The Chipophone.

The organ keys, pedals, and switchboard will interface with four MIDI CPUs that produce MIDI

data that gets interpreted by the Raspberry Pi boards. The whole chipophone will be powered

by three DC power supplies all tied together to a single AC receptacle.

Software Specification

All software will run on a distribution of Raspbian Wheezy. This is a Debian distribution made

specifically to run on the Raspberry Pi. We will be using the PortAudio library to interface with

the sound drivers on the operating system. The PortMIDI library will be used to translate the

UART input from the Raspberry Pi into MIDI. The audio synthesis and MIDI handling software

will be written in C++.

Simulations and Modeling

For the first semester of this project, we will have a working prototype of the Chipophone. This

prototype will have basic functionality with a polished look and feel. The functionality we’re

looking to achieve is the ability to play any note on the keyboard without any modulation. This

means basic square/triangle/noise waves. Simulating this prototype is a very simple process

that can be done entirely on a computer. We’re able to test the entire synthesizer in any Linux

environment, which is what the Raspberry Pi is based on.

The second semester will be spent refactoring the prototype into modular C++ code. Simulating

and testing this software can be done on a laptop independent of the rest of the system with a

USB MIDI controller.

Implementation Issues/Challenges

Implementation of the synthesizer comes with many challenges because of a few things. The

first issue is that the Raspberry Pi has an ARM based processor, meaning that code we write on

our own computers likely doesn’t have compilers designed to make binary executables for ARM

processors.

Another issue we’ve come across is that the Raspberry Pi and PortAudio have their own quirks

about recognizing default audio devices. This has been solved by reconfiguring the library to

match our device.

The Raspberry Pi Model has a 700 MHz processor, which is powerful for a microcomputer.

However, audio synthesize is a very taxing process. We have come across many software

efficiency problems where we need to optimize parts of the software. Our audio callback is

called 32,000 times every second, so it needs to be very efficient.

Design Documents

System Design

Each of the keyboards, the pedals, and the buttons will each have their own MIDI CPU, which

will take the user input and translate it to MIDI data. The songbox module will receive the MIDI

data from the keyboard and the Arduino and pass the data through to the synthesizer. The

songbox may also record the MIDI data or inject more MIDI into the stream. The synthesizer

receives all of the MIDI from the songbox and uses that information to update the data model

and fill the audio buffer for the sound card to play.

Hardware Design

The hardware for this project, on the surface, is relatively straightforward: we’re using an old

organ console, its two keyboards, and its pedals as the base for user input. Each keyboard must

have an independent channel, and each MIDI CPU can only output one channel at a time,

therefore each keyboard and the pedals will have their own CPU to encode MIDI data.

The layout of a MIDI CPU is shown below:

● The control terminals are what each of the switches will connect to (scheme for

connections covered later)

● The power input is where the +5V supply connects

● Power access is simply a doubling of the input power pins (mainly for putting a power

indicator LED in the unit)

● Calibration control inputs are for calibrating analog inputs, such as potentiometers. In

this design, for any sort of variable (non-note) user input, we will be using encoders, so

these connections will be unused

● Activity Indicator pins are where an LED may be placed to indicate MIDI activity on the

chip; there is a built in activity monitor LED right on the chip

● The MIDI I/O pins are where the encoded MIDI data passes out of the MIDI CPU; the

input is used only for programming the CPU; otherwise the input passes straight through

the output

● Finally, the MIDI channel selection jumpers are used to set the MIDI channel of each

CPU

Because the MIDI input of each CPU is directly passed to the output, the multiple CPU’s can be

strung together, as shown in the following figure:

The final MIDI CPU will have a serial stream of all of the MIDI data produced by the user. The

MIDI spec specifically allows for this architecture, and the concatenation of multiple serial

streams is handled by the CPU without any accidental bit-mixing. This final MIDI serial stream

will then be passed into the Raspberry Pis’ GPIO pins.

Finally, in order to connect each key to the MIDI CPU, we need a scheme a little more complex

than a one-key-to-one-input scheme. Luckily, the MIDI CPU allows for such a scheme. By

reconfiguring a few of the control pins, we can create a switching matrix, allowing for more than

23 keys to trigger MIDI events on the CPU. A small overview circuit is shown below:

Between the CPU’s switching matrix scheme and its ability to read encoder inputs, all of the

user interface hardware is able to be handled by only 4 CPU’s, all run serially together to send a

single MIDI signal to the Raspberry Pi’s for decoding and synthesis.

Software Design

The diagram above shows a more detailed view of the software design inside the “Parsing and

Sound Generation” module pictured in the System Design Diagram. It is important to note that

the input of this module doesn’t change whether the songbox is attached or not. There are three

main components to this design: Inputs and Change Requests, Sound Data, and Synthesis and

Output.

The Inputs and Change Requests component (blue box) will read the MIDI data and parse it.

The MIDI standard describes sounds, but also includes program change requests, so this

module will also be a decision maker and take actions based on the interpretation of the MIDI

commands. Actions might include changing the qualities of the ADSR envelope for a certain

module, adjusting pitch of a note, and more. This component has write access to the information

in the Sound Data component.

The Sound Data component keeps track of the current state of the organ. This is important

because the user will be able to assign different voices or “instruments” to each of the

keyboards and the pedals, and the user will have the freedom to adjust the types of waves and

qualities of the sounds resulting from the organ, and this information needs to be readily

accessible and organized when creating the synthesized wave in the Synthesis and Output

component.

In the Synthesis and Output component, there is an audio callback which fills a buffer one

element at a time based on the current Sound Data and wave properties. When this buffer is

full, it is sent to the sound card, and beautiful music is made.

Standards
Our chipophone uses the MIDI standard to communicate between the different components in

our system. MIDI is a technical standard that describes a protocol, interface, and connectors

and allows a wide variety of electronic musical instruments, computers and other related

devices to connect and communicate with one another. The MIDI protocol has set parameters

that describe the types of information that can be sent using the MIDI interface, and the

methods to send this information between electronic devices and musical instruments.

We are using this standard to provide modularity in our project design and also to allow

versatility to the users of our project. By using MIDI, any user can connect a device that

communicates using the MIDI specification and send the MIDI messages through the

chipophone for synthesis. On the other hand, if the user has their own MIDI receiving device,

they are able to plug into the MIDI out, and create their own interactions because we follow the

standard methods of communicating MIDI serially. This also allows the information being

communicated using MIDI within our system to be easily output and shared with anyone who

might be interested.

Testing and Evaluation
The user interface interfaces with the Arduino Mega and produces the correct MIDI values for

each input device. Using a laptop, a USB to MIDI interface, and a software program called

MIDIMonitor, we were able to listen to the stream of MIDI and verify that the intended message

was being sent from the user interface elements and from the keyboards.

The software is capable of reading from any MIDI device and synthesizing the notes from the

MIDI device to produce sound. For example, we had a small USB keyboard which aided in

testing code functionality without depending on the organ keyboards or hardware. To test

specific classes, we developed unit tests which were run to ensure new features were working

correctly and also to ensure new features didn’t break the existing features.

Each of the system components when connected together result in the overall The Raspberry Pi

successfully produces audio based on MIDI input from the keyboards and user interface

elements. This was tested by playing a known tune, and aurally verifying the sound quality.

Specifically, the goal is to hear no loud speaker pops or other sound defects while the music is

playing.

Project References

Description Location

Linus created a similar chipophone http://www.linusakesson.net/chipophone/

MIDI Specification http://www.midi.org/techspecs/

MIDI Bit Table http://www.midi.org/techspecs/midimessages.php

